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UNITARY GROUP TENSOR OPERATOR ALGEBRAS FOR MANY-
ELECTRON SYSTEMS: 1. CLEBSCH-GORDAN AND RACAH
COEFFICIENTS
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Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1

Abstract

A basis for the Racah—~Wigner algebra of irreducible representations of the unitary group
U(n) that are pertinent to quantum chemical models of many-electron systems is developed.
Standard Clebsch—Gordan coefficients and isoscalar factors (also called coupling {actors
or reduced Wigner coefficients) for both symmetric (S,,) and unitary [U(n)] groups are
extended to transformation coefficients and corresponding isoscalar factors relating
canonical Young—Yamanouchi or Gel'fand—Tsetlin bases to simple partitioned bases. All
these different types of isoscalar factors are interrelated using the well-known reciprocity
between the S, and U(n) tensor representations, and general expressions relating these
different factors are given. For the two-column representations characterizing the many-
electron theory, detailed explicit expressions are presented for both the above-mentioned
relationships and for all relevant U(n) isoscalar factors. Finally, U(n) Racah coefficients are
introduced and explicit expressions derived for certain special classes of these coefficients.

1. Introduction

Since its introduction into quantum chemistry [1,2], the unitary group
approach (UGA) [1,3,4] to many-electron systems has evolved into a very versatile
formalism [5—18] which enables the construction of efficient algorithms for
computations involving spin-adapted N-electron tensorial orbital product bases and the
corresponding matrix elements of particle number conserving operators [5—24]. In its
standard version, it exploits Gel'fand—Tsetlin (GT) bases [25] that are adapted to the
canonical subgroup chain U(n) > U(n - 1) >. .. D U(1), thus enabling one to formulate
a convenient representation scheme for the generation of relevant tensor product spaces
[1,6,26] and to construct matrix representatives of the Hamiltonian as a product of
segment values [6-12,27,28] associated with each orbital level. The versatility and
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efficiency of these algorithms facilitated the design of various codes for large-scale
configuration interaction (CI) calculations [19-24], which often provide benchmark
results in the electronic structure theory of small and medium-sized molecules. UGA
formalism has also been employed in electron propagator theory [29], the coupled
cluster approach [12,15,18,31], many-body perturbation theory (MBPT) [12,19], MC
SCF approaches [32], and is being considered for relativistic effects (particularly the
spin-orbit interaction) [33]. The UGA developments that were stimulated by the struc-
ture of the many-electron problem [1,5—7] can, in fact, be extended to the case of more
general, more than two-column irreducible representations (irreps) [34,35] and be
exploited in problems of nuclear structure and nuclear magnetic resonance spectro-
scopy. The principal features of UGA can thus be summarized as follows:

(i) UGA provides spin-adapted bases for the expansion of exact molecular
orbital model wave functions that are suitable not only for CI expansions, but
also in valence-bond theory [12], ligand field theory [36], nuclear shell
model calculations {3], etc.

(ii) It enables an efficient computer storage for even very large basis sets, using
the distinct row table (DRT) representation as well as convenient graphical
representation of these bases [6,7,26].

(iii) Finally, it facilitates an efficient matrix element evaluation of U(n)
generators and of their products, and thus of various physical observables
[1,5-8,16,27,28].

The importance and usefulness of UGA for the quantum theory of molecular
electronic structure stems primarily from the fact that all particle number conserving
operators can be expressed in terms of U(n) generators. Thus, although the unitary
group is not the invariance or symmetry group of the relevant model Hamiltonians, it
may be regarded, in a certain sense, as a dynamical group [17,18]. This dynamical group
viewpoint recently led to an extension of UGA, referred to as Clifford Algebra UGA
(CAUGA) [13-15], through an embedding of U(n) into a much larger group UQ2"),
whose fundamental representation states can be regarded as Clifford numbers spanning
the Clifford algebra C . Moreover, the CAUGA group U(2") represents a true
dynamical group for any n-orbital model, since all the states of such a model are
contained within a single irreducible representation (irrep) (20) = (2000. . . 0). In con-
trast to UGA, based on the GT chain, CAUGA admits arbitrary coupling schemes. We
can thus employ canonical GT states as in UGA, or various partitioned bases [14] or
valence bond (VB) states [13,14] which, in some sense, represent the most natural
choice. This aspect of spin-adapted VB states was recently developed by Paldus et al.
[37] and, from a different viewpoint, exploiting the so-called bonded tableaux, by Li and
Zhang [38].

It is also important to emphasize the close relationship that exists between the
unitary U(n), symmetric Sy and angular momentum SU(2) groups. Indeed, any one of
these groups can be successfully exploited in the electronic structure calculations, and
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each brings a unique and useful viewpoint on the problem. Thus, the relationship
between U(n) and SU(2) or S, and SU(2) was successfully employed in deriving
segmentation fomulas for generator product matrix elements [8,27] and, generally, for
antisymmetrized-geminal product wave function formalism, particularly for spin
bonded functions [28]. The UGA DRT structure was also successfully implemented at
the S level [26,39], reflecting the well-known S,—U(n) reciprocity, first established
and employed in the pioneering work by Schur and Weyl.

It is our belief that a future development of UGA formalism can greatly benefit
from an intimate understanding of the S,—~U(n) reciprocity and of the underlying
mathematical structure, and will enable the development of a more general formalism
which will closely parallel the SU(2) formalism and will be capable of handling non-
canonical GT states, such as required in partitioned bases [14,40] as well as general
particle number non-conserving [13,29,41] and/or spin-dependent [33] operators. It is
the main goal of this series of papers to initiate these developments by introducing a
unitary group tensor operator (Racah—Wigner) algebra that is particularlj/ suitable for
the quantum theory of many-electron systems. The angular momentum algebra su(2),
which will motivate present developments, was first introduced into quantum
mechanics by Racah, Wigner and others and soon became a standard method in
theoretical physics and chemistry. Racah—Wigner su(2) algebra can be found in
most advanced texts on quantum mechanics, as well as in numerous special
monographs [42-47]. Today, it represents a standard tool in the many branches of
theoretical physics and chemistry that require coupling of angular momenta. Various
diagrammatic techniques, referred to as graphical methods of spin algebras, were
developed for an efficient handling of these problems [48—50]. Numerous applications
in collision theory, intermolecular forces and other fields come to mind. The same idea
was also extended to finite point groups, and the resulting irreducible tensor method was
developed in ligand field theory by Griffith [51].

The Racah—Wigner algebra for general unitary groups U(n) was also widely
studied by Biedenham, Louck and others [52—-59], and an authoritative monograph on
these developments is now available [46,47]. Although many of these very ingenious
mathematical advances await to be exploited in actual applications, the developments
of the past decade in quantum chemistry clearly indicate the important role the unitary
group can play. These developments can be further enhanced by exploiting a modern
representation theory for semi-simple Lie algebras as developed by Harish—Chandra,
Kostant, Verma and others [60], as recent work of Coleman [61] and Gould [62]
indicates. In the future, we hope to investigate the close relationship that exists between
the present su(2)-modelled approach and more general Green—Gould representation
theory for unitary and orthogonal Lie groups [62—-64].

Just as the appearance of the Wigner formula [65] for the SU(2) Clebsch—Gordan
(CG) coefficients greatly benefited the development of the angular momentum calculus,
there is little doubt that the development of the Racah—Wigner algebra for other groups,
and particularly their applications, will require efficient computation of CG coefficients
and closely related higher-order invariants, such as Racah coefficients, 9 symbols, etc.
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for these groups. At present, a vast literature exists that deals with these topics for U(n)
and that is based on very different approaches and viewpoints. To mention at least the
most important ones, we note pattern calculus of Biedenharn and Louck [54], Racah's
infinitesimal operator approach [66], diagonalization of a complete system of com-
muting operators (CSCO) [67], vector coherent state theory {68--70] and the build-up
procedure for isoscalar factors [71]. For smaller groups, which are relevant in the theory
of a few particle systems, Chen et al. [72a] developed an efficient code that determines
the isoscalar factors for an arbitrary partition and produced their tables [72b,c].
Although these tables are extremely handy in various studies and developments, their
general usefulness is rather limited in quantum chemical applications, where the order
of the group n as well as the number of electrons N determining the general irrep [1]
can be rather large. Thus, unlike the point group irreducible tensor methods for ligand
field theory and similar applications, where such tables are essential [73], the large-scale
calculations of molecular electronic structure require the availability of efficient algo-
rithms for the relevant U(n) CG or Racah coefficients, which enable us to generate these
quantities "on the fly". An additional advantage may result when these algorithms can
be made n-independent, since n can be rather large and will change when going from
one 1-electron basis (or model) to another. The feasibility of such a development was
implied in recent papers [72,74,75] considering U(n) CG coefficients and related U(n)
and S, isoscalar factors.

In the general case, the major difficulty in an efficient construction of U(n) CG
coefficients is the multiplicity problem. This problem has not yet been satisfactorily
resolved within the group representation theory itself. It is fortunate, however, that in
most cases which are relevant in applications to many-electron systems, the multiplicity
problem can be avoided. For example, no multiplicity will arise when coupling two
electronic GT states describing sub-systems with N, and N, electrons into a resulting
N =N, + N, electron state. Consequently, the relevant CG coefficients can be com-
pletely determined and given by explicit closed formulas, just as in the SU(2) case.

In this paper, we present an algorithm for an efficient construction of CG
coefficients for U(n) GT bases, as well as corresponding isoscalar factors (or reduced
Wigner coefficients) and Racah coefficients. Although numerous results given in this
paper hold for general U(n) irreps, the final explicit formulas are invariably given for
two-column irreps that are relevant for many-electron problems. We start (section 2)
with an overview of the outer product coupling coefficients and corresponding isoscalar
factors for the symmetric group Sy~ and extend these concepts to the case of transfor-
mations to partitioned bases. The resulting isoscalar factors are referred to as transform-
ation (/ :) factors in order to distinguish them from standard isoscalar factors, which may
also be called coupling factors. Analogous concepts are introduced in section 3 for the
unitary groups. We then exploit the reciprocity between the Sy and U(n) irreps in section
4, obtaining the relationships between various isoscalar factors of sections 2 and 3.
Relying entirely on the Sy representation theory, we derive explicit expressions for U(n)
isoscalar factors involving two-column irreps. These resulting closed expressions are
not only very simple, but also n-independent, since they result from symmetric group
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considerations. They are presented in section 5, and their derivation is given in the
appendix. Finally, in sections 6 and 7, we introduce U(n) Racah coefficients and derive
formulas for certain important classes of these coefficients. In particular, some recent
results obtained with the vector coherent state theory [70] are obtained in an equivalent
but distinct form which is n-independent.

The results of this paper lay the ground for further development of tensor operator
algebras, which will be given in a subsequent paper of this series.

2.  Summary of the outer product coupling and basis transformation
coefficients of the symmetric group Sy

2.1, BASIC CONCEPTS AND NOTATION

Consider an irreducible representation (irrep) [A] of SN and its carrier space {Vx'
These irreps are uniquely labeled by Young diagrams [4], [A]=[4,4,,..., 4],
A 2z A,2...2 4, with {1} representing a partition of N,

N
> A =N. (1)
i=1

Throughout this paper, we designate the irreps by lower case Greek letters
A, i, v, etc. Any relationship or expression using this notation is valid generally for an
arbitrary irrep of S, [or U(n)]. Later, when we restrict our considerations to at most two-
column tableaux that are relevant for many-electron systems, the irreps are labeled
explicitly as [2° 18], or (2¢1%) for U(n), or simply (a, b). The dimension of [A],
dim[A] = dim ¥, =:f,, is easily obtained in terms of hook lengths k, as [76,77]

H=NUITHh. )

It is also well known that we can label the standard or canonical Young—Yamanouchi
(YY) basis for [A], which is adapted to the chain

S

NDS

v 2 28,28,08, 3

by |[A]r), where r designates either a Young tableau or a Yamanouchi symbol

rEryry_,--..r [78]. We shall also employ a nonstandard basis, which is adapted
to the chain
SNDSNIXSNza N=N;+N,, “4)

and which is canonical with respect to both SN1 and § X designating its vectors by the
symbol
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[[A)r'r®) = [ALIA,) (A0 %), &)

where [A,] and [4,] are SN1 and SNzirreps and r! and 2 are adapted to the canonical
chains

SNy 28M-12...285; and Sy, D Sy,-1 D ... D Sy, (6)

respectively. It will sometimes also be convenient to label standard basis vectors |[A]r)
as

[A1r) = (417 p%), )

where r' is a partial Young tableau containing the first N, indices 1,2,..., N, while
p?, which is generally a nonstandard sub-tableau, consists of the remaining N, indices
N +1,N +2,... ,N, + N, =N. Thus, for example, for the first YY basis vector of
the irrep [2%1] of S, (using canonical ordering)

1 2
22113 4> =[2%113,2,2,1,1) = |[2%11r'p %), (8)
5

when choosing N! = 3 and N2 = 2, we have

11 2 2+ 4

We shall always use letters of the Greek alphabet to label the second (generally non-
standard) sub-tableau in order to avoid confusion with the shorthand notation for a
non-standard basis shown on the left-hand side of eq. (5). Also, for the sake of easier
typesetting, we do not draw boxes around the individual entries in Young and Weyl
tableaux unless confusion is possible.

It is clear from eqgs. (4)—(6) that it will be useful to generalize the concept of a
permutation P, representing a map P:i — P(i) from {1, 2, ..., N} onto itself, to a more
general ordered set o,

O={i,iy...,i (10)

N}, I <i,<...<i

N
We thus introduce the generalized permutation group S, (w) defined as a set of all maps

P of wonto itself. The standard symmetric group S,y then corresponds to a special choice
for w, namely

o ={1,2,...,N}, (11)
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so that S, = §,(w,). We can now define a generalized standard basis for SN(w) as a
basis adapted to the chain

SN(w) o SN_ 1(mN_ = SN_Z(wN_Z) D...D Sl(wl), 12)
where the family of ordered sets w,,
W=EW,DO, DO, ,D...D0, (13

is recursively generated by deleting the largest symbol at each step, i.e.

¢ : max
o, = 0\, (14)
where
ij’"‘ax = max(coj). ~ (15)

We are now ready to introduce an outer product basis for S,. Let us consider an
arbitrary partition of the set @, (eq. (11)) into the two disjoint sets o' and ©?® with N,
and N, objects, respectively, N = N, + N,,

o' ={iy iz, ... in Y 0 <ig <... <IN, (16a)

@ = (rodos-din b i <J2 < <N (16b)
so that

o'V et=w=(1,2,...,N}, o' Nt =0D. )

These sets define two generalized symmetric groups Sy (w ) and S, (mz) Introducing
the following maps

w! PR S YA w? N J2 <o INg

we can obtain generalized standard bases for S, (w ) and S, (co’) by applying these
maps to standard bases for S, and S =Sy (wz) respectwely, namely

1 1
[e? 1r‘<w‘)>=[2§’] g2 ]r‘(wé»s[z‘j] (A1), (199)

and
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A2 1r*(0?)) = [“a’é} [[Az21r%), (19b)

where all the labels in the Young tableau r? have been shifted by Nl. Generally, rk(w")
designates a Young tableau in which the map

o] .
o .j—)lj

(eq. (18)) has been carried out, so that r* = r"(a)(')‘). Clearly, r* remains unchanged when
the Yamanouchi symbol notation is used. It must be stressed that although the maps (18)
are not permutations, their composition is a permutation assuming that eq. (17) holds,

i.e.

The tensor product of generalized standard bases

1A 17 (01 ® [[A2 17 (@)) = 1[4, 17 (0)) | [A2 172 (%)) (21)

for all possible choices of @' and w? satisfying egs. (16) and (17) is referred to as a
standard outer product basis for S,,. For each fixed choice of @' and @?, the basis (21)
provides an irrep of Sny X Sy, However considering all possible partitions of @ into @'
and ®? (egs. (16) and (17)) we obtain a reducible representation for S of the
dimension D,

N
D((A11® [A2]) = N fy, fo [(N1!N21) = [Nl ) fou Fras (22)

where fM is the dimension of [lk] of § » k=1,2, given by eq. (2). We shall
next outline the relationship between these various irrep bases.

2.2.  OUTER PRODUCT COUPLING COEFFICIENTS AND NONSTANDARD BASIS
TRANSFORMATION COEFFICIENTS

Forming appropriate linear combinations of basis states (21) will yield standard
bases for SN. The relevant outer product coupling coefficients, which achieve this
transformation, are defined as follows:
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[[Alm) = 2 Zmnr (@), [ 126 | [Alm) | [, 1) (0")) | [A 1r2(e?)), (23)

r " m

where [[A]m) form an arbitrary orthonormal basis for the irrep [A] of Sy- In the follo-
wing, we shall pay special attention to standard bases for §,,, in whxch case

[[A1m) = [[A]r). (24)

Note that the "partitioned” notation of eq. (7) will only be useful for those terms
on the right-hand side of eq. (23), which correspond to standard partitioning of @ into
w, and cog. In view of the orthogonality of both bases related by eq. (23), the outer
product coupling coefficients define a unitary transformation and satisfy the same
orthogonality relations as the usual Clebsch—Gordan coefficients of the SU(2). These
can be employed to invert the transformation (23), obtaining

I[A 1r (@) [ TA2 177 (0%)) = [[A; 17 (@' )i [A2 1P (%))

= MZ IAIm)([AIm | [A1 1! (@), [A21r% (@) (23"
]l,m
Considering an arbitrary matrix element of some permutation P € §,, in the outer
product basis, we easily find, using eq. (23”) and the great orthogonality relations
for an orthogonal irrep D! ](P) o =([Al |P [[A]m) of §,,, that the outer product
coefficients possess the followmg ‘useful property

-1 .1

(AP (@), (A 1F(@) | TATY([A)m | [Ag 1r' (@), [A2 1r2(a?))

= % PZS DH(PY; m((A1 17 (@), (3207 (@) [P] (A, )r' (@), [A2 ) (e)). (25)

In order to achieve a transition to standard labeling as given by @] and a)g, we observe
Fhat in a coset decomposition of S, with respect to its subgroup S, xS, N =N, + N,,
ie.

Sn= bJQw(SNl X SN,)» (26)

we can always choose Q  to be of the form

_ (@ w%)_ wé]o w5
Qm—(a)l @?) Lot @] @7
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assuming that Sy, = Sy (co )and S, =S, 2(coz) Thus, for example, decomposing S, with
respect to S, ><S ENY {1 2} xS {3 4} we obtain six cosets (since 4! /2! X 21 = 6) each
containing four elements as shown in table 1. Although it would be most natural to
choose the permutations given in the first column as coset representatives, we have to
make another choice if we wish egs. (26) and (27) to hold, as indicated in table 1.

Table 1

Coset decomposition of §, with respect to S, xS, and suitable coset representatives
Q,, of the form (27). The last column nges the sets @' and @ appearing in the
decomposition of eq. (27)

Cosets Q, o ?
(1), 12), (34), (12)(34) 1 (1,25(34)
(13), (123), (134), (1234) (123) {2,3}:(1,4)
(23), (132), (234), (1342) 23) {1,3};{2.4)
(14), (124), (143), (1243) (1243) (2,4});{1,3})
(24), (142), (243), (2143) (243) {1,4}:(2,3}
(1324), (14)(23), (13)(24), (1423) (13)(24) (3.4}:{(1,2)

With such a decomposition in hand, we can express the outer product basis states
(21) in terms of standard outer product states associated with subsets w; and w?, namely

14,17 (@) 1A, r(@2) = Q,J[A,1r (@) [(A,]r2 (). (28)

Setting now @' and @? in eq. (25) equal to w and w, respecnvely, and exploiting the
decomposition (26), we can rewrite the nghtohand sxde of (25) as

fl z Z ZDM Qa)PIPZ)mm

N! p &Sy, PreSny O,
X (A TF (@) [A P (@) QoPy Py | TA1 r (@b )i [A2 1 (@d))

=N PE;;DW(QwﬂPz)m m
1 2

Z (A 17 (@) (A2 17(@°) | Qo | A1 )5 (@) [A2 152 (B )

S S

x ([A11s" (@0) 1Pl (A1 17t (000)){[A2 1s*(@08) | P2 | [A2 1P (@])). (29)

Clearly, the sum over Q,, reduces to a single term @, which transforms @, into
o = {@',d?}, namely
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0,0, = @, : (30)

in which case the matrix element over Q o Feduces to a product of Kronecker deltas for
Young tableaux (or Yamanouchi symbols)

071 ;1 8522,

We thus finally obtain the desired relationship

(A 17 (@), A P (@) TATRY(Am | [A 17 (), [Aq 1P (@)

fa
=¥i. 2 X DMQaPiP)qm DM P DR )2, 31)
* PeSny PreSn,

where o is defined by eq. (30). Setting, finally, o= o,, so that O, = (1) = e, and using
the fact that [A] { SM = [4,] (note that the multiplicity of [4,] in [A] equals one), we can
exploit the great orthogonality theorem for S e obtaining

(A TF (@b), (A2 17 (@B )| ALY [ATm | A 1r (a0 ), [A2 P2 (a))

|
— N1 .fl Z D[lz](Pz )Fz,ﬂ([A]rlﬁzIle [A.]rlpz), (32)
Nlfa pesn,

where we also used the fact that when |[A]m) = [[A]r! p?), then |[[A]m ) = [[A]r'p?%) must
equal [[A]r'p?), so that we must identify r' and 7'. This also implies that the outer
product coupling coefficients are independent of r! or r!, namely

(A1 1r (@), [ 1P (@) AL p2) = ([A )7 (@), (A2 (@) [A)F p).  (33)

We now turn our attention to a transformation of a nonstandard basis |[A]r'r?)
(eq. (5)) to the standard basis for SN. This is achieved by introducing the (nonstandard
basis) transfomation coefficients defined as follows (note that the shorthand notation
suppressing the irrep labels [4,] and [4,] (eq. (5)) is employed here and in the following
text):

Al = At pHy = 3 2<[z1]r‘r21[/1]r>I[A]r‘r2>, (34)
[A21.r

or, conversely
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ALY F) = [[AL A1 1P, (A2 172

= YA o2 AN P AN p Py, (35)
p?

since these coefficients must satisfy the obvious orthonormality properties

A A p2NAL PRI TAVF 7oy = 82180151 8,22, (36)
p?
and
uz} (AT AL LA IS A P UAL LA 1Y (AR 1P | [AVF) = 81167 (36")
2)r2

These coefficients are in fact closely related to the outer product coupling co-
efficients, as we shall now indicate. The key to this relationship is the fact that, up to
a normalization factor A, we can obtain the nonstandard basis vector (5) by projecting
the standard basis vector |[A]r) = [[A]r'p?) with the Sy Young orthonormal unit o[’} 2]
associated with irrep [4,], so that

NI [AIr' ) = o1 A1 (37)

where explicitly

[A2) _ far. D*(py o2p, 38
orz; Nz' ’ﬁgnz ( 2)r77' 2 - ( )

We recall that these units possess the well-known algebraic orthogonality properties

oM ol = i 8, oM (39

as well as the hermiticity property
o1 = o, “0)

and that the second index 2 is arbitrary as far as the projection property (eq. (37)) is
concemed. Using the hermiticity property (eq. (40)), we see immediately that

A= (A1 2ol A1 67y = ((AIr P A 67, (41)
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so that projecting eq. (37) onto [[A]r) = |[A]r!p?), we find that

(AT P A) B 2)AI 2 AL 72

- ._sz_ 2 D[AQ](PZ ),2;7-([3,]1‘1[)2[1’2[[1]71.52)- (42)
NZ! Pre Sy,

Comparing this relationship with the corresponding one for the outer product coupling
coefficients (eq. (32)), we find that

(A 1r (@), A 172 (@) AT 5 YA AT 21 AL 1r (@), [Ag 1P ()
- %‘,%’% A1 2R p 2NN 52 AL 7). @)

This implies the following simple relationship between transformation and coupling
coefficients (assuming from now on that a real representation of these coefficients is
used):

((A,1r (@), [A) A @DIAIr p?) = (A, A A) (AL P2 (AL p2), (44)

where the proportionality factor y has the form (cf. also eq. (4-179a) of ref. [67])
172

Np!IN,!
1!N; fx] (45)

A, A A) =
A1, A2;4) (N!fhsz

Example

To conclude this section, we illustrate the above-introduced notation and defini-
tions on a simple example, alluded to already in egs. (8) and (9). Consider the symmetric
group S, together with the chain §; o S, x §,. The standard basis for the five-
dimensional irrep [221] can thus be labeled in one of the following ways:

oty

3
2 _ _J|in2.,1 3 - 4
[[2°1]3,2,1,2, 1")— 2 4> —-‘[2 1]2 5 >, (46b)

12%113,2,2,1,1) =

[, R OV

p—
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12 1 2 . 5
122112,3,2,1,1) = | 3 5> =|[221] > (46¢)
3 4
4
13
221123, 1,2 1y=2 5 =22y} 3 - 5>, (46d)
2 4
4
1 4 by
12°112,1,3,2,1)= (2 5 ) =|[2%1]2 , (46¢)
3 ; 5

where the first symbol uses a Yamanouchi symbol, the second one a Young tableau (that
automatically implies the Young diagram [221] which we thus omit) and, finally, the
third symbol employs the S, X S, subgroup tableau decomposition r = r!p? In contrast,
the non-canonical basis vectors for the same irrep of S, based on the chain §; > §, xS
are

2

1 2
[221]3 4 5>, (47a)
.1 2 4
[2°1], 5>, (47b)
1 3
[2%1] 4 5, (47¢)
2
,. 1 3 4
2%, 5> , (47d)
1
) 4
2nz ) . (47¢)
3

Obviously, the first two basis vectors (47a) and (47b) can be obtained as linear combi-
nations of vectors (46a) and (46¢) and, similarly, (47c) and (47d) as linear combinations
of (46b) and (46d). The last vector (47¢) corresponds directly to (46¢). The transforma-
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tion coefficients defined by eq. (34) obviously give the overlaps between canonical and
non-canonical basis vectors (46) and (47), respectively.

Considering next outer products of S, and S, irreps, we easily find (using
Littlewood rules) that the [2%1] irrep of S can be obtamed in either of the following
ways:

RUSR2]I=4110[32] D [2%1] @[3 17
(20) @ O ® ©® ., (48a)

2117 =21 @ [32] @ [2°1] @ [3 17
(20) ) & & ), (48b)

(118117 = [1°] @ [2 1%] @ [2%1]
(10) ®»m @ G . ‘ (48¢c)

where below each equation the numbers enclosed in parentheses indicate the relevant
dimensions. The required S, basis vectors carrying [221] can thus be obtained as linear
combinations of product states of types |[2 1]17)|[2]s), |[[2 117)|[13]s), or [1°17)|[1%]s)
using the outer product coupling coefficients defined by eq. (23).

23. S, ISOSCALAR FACTORS

An important property of both coupling and transformation coefficients that are
associated with bases adapted to canonical chains (3) or (6) is their factorization into the
product of factors, which can be fully characterized by the irrep labels for pairs of
neighbouring subgroups in the chain. These factors are referred to as isoscalar factors
or reduced Wigner coefficients [55,71]. The subsequent paper of this series will show
that they are closely related to the segment values of the UGA [6,8], and that they reveal
the composite structure of canonical bases and related coupling and transformation
coefficients.

We first tum our attention to the outer product isoscalar factors (1, factors),
which are defined as the ratio of two outer product coupling coefficients

[/1])
(u]

= ([A1 170", A2 P A - (L 1s (@), T 1s% () 1 [uds) ™", (49)

! ([}»1] [42]

[M)=[[11] [A2]
Ul [p2]

_ m] =([M] (2]
1) "\l (o]

o Ul 2]

where s results when we remove the box containing the label N from the Young tableau
r, as schematically illustrated in fig. 1. Likewise, there are two possibilities for [4,] and
(). If N € w,, then
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b
L\&\\%

Fig. 1. Schematic representation of Young tableaux
characterizing the Nth level isoscalar factor.

[Al=[g] and [[A]r@") = |1 ]s' @),

so that s @’?) results from r’(w?) by deleting the box containing N. If, on the other
hand, N € ', we have that

[A)r (@) = (1,15 (@)

and s'(@’!) results by deleting N in the tableau r'(®'). Note that although we defined
the isoscalar factor for the Nth level in order to keep our notation as simple as possible,
this definition applies to any level in the canonical chain (3) or (6). Then, using the
definition (49) recursively, we can express any outer product coupling coefficient as a
product of isoscalar factors
)
(11 } (50)

[p-1D]

N ( 1w
i=2

(A1 (@"), [A2 1% (@)1 1Ay = TT (LD (gD

where g™ = 4, u™ = 2,, ™ = }, since the S, outer product coupling coefficients
((1XDOJO[11(1)) = ([01(0)[1)(1)|[1](1)), appearing in the last isoscalar factor, are
equal to one.

We next consider the subduction S, l SN; X SN2 and define the isoscalar factor
Is (subduction isoscalar factor) for a nonstandard, partitioned basis (5) as

ls([/h] (4] [M)E(W [42] m]) z([m (4] [u)
] ]| [a] 2] | (1))s 2] | ()
= (I P A ) (Ll P Ll ) (s1)

We note that these factors are also sometimes referred to as the symmetric group
reduced transformation coefficients (RTC) or reduced subduction coefficients (RSDC)
[67]. Recall that [[A]r'r?) = |[A];[A,]r',[4,]r?) with Young tableaux r' labeled by
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1,2,...,N, and r? byN+lN+2 , N, + N, =N, and r'p’? and r'? resulting,
respecnvely, from r = r'p? and r? by deletmg the box labeled with N (or,
equivalently, by dropping the first label in the corresponding Yamanouchi symbols).
We see that in contrast to the /_ factor, the first irrep [A ] is always the same in the 1
factor, so that it does not have to be repeated and enables us to graphically dxstmguxsh
both factors. Should the danger of confusion arise, however, we shall employ the
notation indicating /_ and /_explicitly (or as a subscript). In any case, it is easily seen
from eq. (44) that both factors are simply related, namely

I ([11] [A2] [l])z)’(ll,lz:l)] ([11] [A2] [A]) (52)
Nl W2l | (1)) v, i)\l (2] | [1])
Since, in fact, [Al] =[] for I, we have that
1/2
([)’1] [A:] [l])z[Nflzfp} ([11] [A2] [/1]) (53)
(2] | (1] Nofafu, (A1 (2] | [u]

3. U(n) isoscalar factors

We shall next consider irreps (1) of U(n), where 4 is again a partition of N with
at most n components A, 4,,...,4 , ¥, 4 =N, while N is arbitrary. The dimension
d,of (A) is given by the Weyl—Robmson formula [79—-81] and the standard basis is that
adapted to the Gel'fand—-Tsetlin chain [25], which we write schematically as

U)o Umr-1)>...>5UQ2)> U). (54)

This basis can be labeled either by Gel'fand tableaux (m) or by Weyl tableaux W. For
electronic Gel'fand—Tsetlin states, we can also use an efficient ABC (or Paldus) tableau
or related step number labeling [1,6—8]. The relationship between these various
labeling schemes is well known (7,8,82].

In general developments described in this work, we shall primarily employ Weyl
tableau labeling for the following two reasons: (i) it facilitates the establishment and
exploitation of the SN—U(n) duality in view of a simple correspondence between Young
and Weyl tableaux, and (ii) it makes the formulation independent of the order of the
unitary group n. Consequently, our expressions for the U(n) CG coefficients, isoscalar
factors, segment values, etc., will also be n-independent and, hence, applicable to any
chain U(m) > U(m - 1) or any orbital level in many-electron theory applications. This
is clearly an important and beneficial feature of our formulation, since not only can n
be fairly large when handling many-electron problems, but this also makes the formulas
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independent of the orbital basis size. When we restrict our considerations to at most
two-column tableaux that are relevant for many-electron systems, it is straightforward
to recast the relevant formulas into the most convenient labeling scheme for a given
problem, be it ABC tableaux or its various sub-tableaux, step number labeling, etc.

It is also useful to recall that the U(n) Clebsch—Gordan coefficients can be
defined in two different ways: (i) either as the coupling coefficients for basis states (e.g.
Gel'fand—Tsetlin basis), or (ii) as the matrix elements of Wigner operators (in which
case it seems more appropriate to call them Wigner coefficients [46,53]). Clearly, our
main objective is to calculate matrix elements of U(n) generators and products of such
generators, through which one can express quantum mechanical operators associated
with various observables of physical and chemical interest. This will be done not only
for the canonical Gel'fand— Tsetlin basis, but also for bases which are suitable when
considering a system partitioning [14,40,83]. Thus, our objective represents a special
case of a more general problem of matrix element evaluation of general U(n) tensor
operators, to which this series of papers is devoted. In contrast to existing methodology
in this regard, we intend to exploit the close relationship between unitary and symmetric
groups, as outlined in the introduction.

Designating Gel'fand—Tsetlin basis states for an irrep (v) by |<v“’,)>, we define the

U(n) coupling coefficients as
(v) <A>> }(u>>
W>x v/iv/’ (53)

<v>> -y <<A> (1)
W v \U V
where (A), (i) and (v) are irreps of U(n) and U, V and W are corresponding Weyl
tableaux, labeling basis vectors of their carrier spaces, respectively. Clearly, these
coupling coefficients are nonvanishing only when (v) c () ® (y). Moreover, we assume
that each irrep (V) appears in the product (1) ® (1) at most once which is not, of course,
the case in general when (v) can occur with nonunit multiplicity. In the general case, we
thus require additional labels which resolve this multiplicity problem. However, in the
actual applications which we have in mind, we deal with special irreps characterizing
the many-electron systems. Since in these circumstances the multiplicity problem can
be avoided in most cases, and we do not wish to make our notation unnecessarily
cumbersome, we shall in the following assume that {v) occurs at most once in the direct
product (A) ® ().

In complete analogy with the symmetric group, we then define the (nth level)
U(n) isoscalar factor

1(<x> (W) <v>)5(<z> (W <v>) =(<x> (W <v>)

WAy wy | (vy) Ay @yl vh)e WA @) | (v

Ay ) [ O\ Ay v\

—<U v W>u<U' v’ w> (56)
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where (4’), (1) and (v’) are irreps of U(n— 1) and U’, V’ and W’ are corresponding
U(n — 1) Weyl tableaux that are obtained from U, V and W by deleting the boxes
carrying the label n. Thus, for example,

/,‘r —1

8 312 (B | Y (B[P
((12> (1) (21) -im" 7 (57)

Note that here and in the following text we drop the irrep labels when they are
automatically implied by the explicit form of the Weyl tableau.

Similarly, as in the case of the symmetric group, we shall also consider bases that
are adapted to the chain

Un) o U(nl) x U(n,), n o+n =n, ’ (58)

1 2

and that are suitable when considering a system partitioning [14,40,83]. Labeling the
basis states adapted to this chain as (cf. egs. (53,54) of ref. [14])

(A1) A\ _
lw ” W2>=I<A>wlwz>

(we again avoid the multiplicity labels, which are not required for at most two-column
irreps), we define the transformation coefficients by

(A1) A\« /A [y A\ (A
lw W, W, '§<W W) W2>t)w>' )

The U(n,) and U(n,) Weyl tableaux W, and W, involve, respectively, the labels 1, 2, .
andn +1,n +2,...,n +n,=n Smce the partial Weyl tableau W which is obtamed

when deletmg boxes canymg labels greater than n in the U(n) tableau W, so that we
can write W wil U(n, ), must coincide with the U(n ) tableau W, so that

<<11> (A2) <X)> = Sw <<?tl) (A2) <l>>
. 1 W . 4

W1 W2 w Wl W2
W, =W LU, (60)

the sum in eq. (59) extends only over Weyl tableaux W with their Wl part fixed. Conse-
quently, the inverse transformation will involve only the summation over the U(n,)
labels, namely
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(AN _ (A1) (32) (A) 1) (42)
l > —(A§W2< W) ‘ > l< ) Wy Wy /° (61)

We note the formal similarity of these U(n) l U(n,) x U(n,) transformation coefficients
with the U(n) CG coefficients (cf. egs. (§5) and (61)), which we distinguish by
appropriate subscripts (at least when confusion could arise). These transformation
coefficients can also be factored into a product of /, (transformation) isoscalar factors
(or U(n) RTCs or RSDCs [67]), defined analogously as the 1, factors (eq. (56)) (cf. also
definition (51))

a wnlw)= (@ @)= Wlw)
<<A11> (A2) <x>> <<All> (vl‘izj ;;/t>>‘ 2)

where W, and W’ result, respectively, from W, and W by a removal of boxes carrying
the label n.

Thus, for each SN or U(n) coupling or transformation coefficient we can write a
factorization formula similar to that given by eq. (50). The number of factors is given
by N for the symmetric group (i.e. by an electron number in our applications) and by
n in the case of U(n) (i.e. by an orbital number). We shall see, however, that for
problems which are relevant in applications, most of the factors in the U(n) factorization
have unit values and thus can be ignored.

In concluding our definitions, we briefly summarize the orthogonality properties
of U(n) CG and transformation coefficients, as well as of the corresponding isoscalar
factors:

@) CG coefficients and I factors:

R ORI N

Uv<W u v >u < Vv } W'>u = Sv Gww:, (63)
Ay ) [\ S0 A N\ .

v,zw <U v w>u <W U’ v’>u~5m’6w’ 64
W | <u>)(<z> W <v'>)_

“(<v"> @y way wyl )= o (63)
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v) )((V)
v\’

(ii)  transformation coefficients and 1, factors:

A W

Ay W
Z( A7y ")

= O an Oy s 66
ACOR )= ou 8 ©o

,bzwz <<‘/;t,> %11) ééz)){ <<;/11> (:vvzz) <;»/')>t S S, -
§<<;11> <é/22> <;‘ll>>l <<:/> <:;1> <;'2’2> >[:5m2 o, .
12(22\“‘) Eiii)(“” ﬁiﬁi <<2’>>)=5“"" | (69)
§(< X ﬁﬁii ﬁif)(ﬁﬁil“” Ezi;)”ﬁz%' (70)

We stress again that for simplicity's sake we omit multiplicity indices in all the above
expressions. General expressions can be found in ref. [74]. We also note the similarity
between both sets of relations, egs. (63) to (66) and (67) to (70). Note, however, that
this similarity is only a formal one. Thus, for example, while we must sum over both
Weyl tableaux in eq. (63) (note the parallel with the SU(2) or angular momentum CGs),
only the second one is summed in eq. (67) alongside with the irrep label, however.
This is easily realized considering an example analogous to that given at the end of
section 2.2. Thus, taking (A) = (2°1), (A,) = (2 1), we have to consider both {(1,) = (2) and
(A,)=(1%),

4. Relationship between the S, and U(n) isoscalar factors
4.1. RECIPROCITY BETWEEN THE Sy AND U(n) IRREPS

The reciprocity between the SN and U(n) (or, generally, GL(n, C)) irreps, first
discussed by Schur and fully explored by Weyl [80], implies that a complete decom-
position of the Nth rank tensor power (%/)®" (where ¥/ is a carrier space of the defining
representation of U(n) {or GL(n,C) = GL(‘V)]) into the irreducible subspaces with
respect to S, yields simultaneously a complete decomposition with respect to U(a) and
vice versa. Another aspect of this reciprocity manifests itself in the reduction of S, outer
products and U(n) Kronecker products of irreps, both given by the well—known
Littlewood—Richardson rules.
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Thus, when we construct an S, adapted basis for a tensor product of N single-
particle states from ¥/, 4/ = Span{¢ |k=1,...,n}, we obtain simultaneously irrep
bases for U(n). The S, "adaption may be conveniently achieved by projecting the yeN
monomials Q(w),

Q) = ¢i,(1)¢i,(2)... ¢iy (V), (71)
o={i,iy,...,in}, H Sih<...<Iin, (72)

with Young orthogonal (or Young—Yamanouchi) units o (eq (38)),

oM=L s pipy p. (38)
N! Pe Sy

This produces the S, adapted bases {o [’”Q(a))ls =1,. fz}’ with r,o fixed,
carrying the irrep [A4] of Sy While each set {o 1Q(w)lr = 1 ., f;; all ordered w's},
with s arbitrary but fixed, spans the carrier space for (A) of U(n) Clearly, in the U(n)
case, different Young tableaux s can produce the same Weyl tableau W (and thus the
same basis state) when the orbital set o contains multiple occupancies. However, taken
as a set, we obtain a basis for (4) of U(n) of dimension d,. Moreover,

§ﬁ¢=ﬂ. (73)

Now, when all the i, € o, k=1,..., N, are distinct, the Young—Yamanouchi
(YY) states obtained in IhlS way are 1dennca1 w1th corresponding U(n) Gel'fand—Tsetlin
(GT) states when properly normalized, i.e.

l<£>>sl<;’>>f|<;> [iu> 1 = 2o, o8

where the Weyl tableau W is obtained by replacing the indices 1, 2, . . ., N of the Young
tableau r by the orbital labels w, i.e. by applying the map (18) or (20),

]:wjlij'—)lj, j=1,...,N, (75)
where now the domain w < {1, 2, . . ., n} and can contain repetitions. The projector 05“]
acts on the electronic coordinates 1, 2, . . ., N, and its first Young tableau s is arbitrary,

but fixed. As indicated in eq. (74), we can often drop this index (see example below).
The normalization factor is easily evaluated as
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Ao MQ(w) | oM Q(w)) = 1

2 % P% D™(P),.(Q(w)| PQ(w))
fa
- b (76)

since only the identity permutation P = ¢ will satisfy the requirement that PQ(®)
= Q(w) when all the orbitals constituting Q(w) (eq. (71)) are distinct. We can simply
write

Ii’},)) = N/£) o0 ), amn

since W uniquely determines r.
Now assume that the highest label in @ is f~times occupied, i.e. that

IN=IiN-1=...=iN-fs1=m, m<n, (78)

while the remaining labels are again distinct. We thus require an additional normaliza-
tion factor, which we designate as [N(A, p?)]7}, so that

lﬂfj} = INGL P (AL p2)
= [N, p DI (N 1/ f) 2o w). (19)

The Young tableau r now consists of two parts: an r' part labeled by indices
1,2,...,N—fand a p? part, labeled by the remaining labels N — f+ 1,..., N. The
Weyl tableau W is again obtained by applying the map (75) to r, which now assigns the
same label m to the last f indices, i.e.

jmi (=1 ,N-f) ad @=(N-f+l,...,N}>m (80)

In other words, the f-times occupied label m will appear everywhere in the partial
tableau designated by p? (cf. section 2.1). Thus, in this case, f! (or less if @} labels
appear in the same row) distinct Young tableau r = (r! p?), with identical r! subtableau,
yield the same Weyl tableau, as schematically shown in fig. 2.

Evaluating the normalization factor N(A, p?) as in the singly occupied case
(eq. (76)), we realize that the sum over S will now involve f! permutations P which
give PQ(w) = Q(w). These permutations fonn a group S (mz) so that
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713 % 7
7

%
i ] m]

N-2 N-1 N
i i k

Fig. 2. Nlustration of the Young tableaux yielding the same Weyl
tableau when multiple occupancy f (e.g. f = 3) is present. The i, j, k
can represent any of the 3! = 6 permutations of N -2, N -1 and N.

1/2
N(A, p?) =[ Yy bp™wpy,| . (81)
Pe Sy(wf)

This relationship will hold even when S_ permutes another set of identical labels, not
necessarily the highest ones. We note that a general analytical expression for this
normalization factor can be found in ref. [84], eq. (5.9). Consxdermg eq. (32) for
[A, ,] = [f], the totally symmetric representation of S, for which pll P22 = 072 12,
we can also write for the normalization factor (81)

N1f,

172
s T 1
T fJ A I I AR, (82)

N(4,p*) = [

assuming that the outer product coupling coefficients are real. This coefficient can be
expressed as a product of / factors (eq. (50)). For greater notational compactness, we
define multiple /_ factors for this case as follows:

(A1 FIDIHAY = (LA T AD,
=([m [f] I [A] X[m [f-11 [x—l(pm)
[(A] UF-10 [ A-1p2))UA] [F-21 | [A-2(0%)])"

([/11] (1 [ [A-(¢- 1)(P2)]]

) 83
(] [0] (A1 (83)

where [A— k( p?)] designates the irrep which results when k boxes with highest labels
are removed from the Young tableau r = (r! pz) that is associated with irrep [A], so that
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[A-f(pM] =[A) (84)

The considered case, eq. (78), applies generally, since restricting U(m) to
U(m — 1) we obtain a valid relationship between YY and GT states. In the general case,
we can thus proceed with multiple occupancies from the lowest multiple occupied level
to the highest one, applying the nommalization factor (81) or (82) at each stage.

Example:

Let us illustrate these developments on a simple example involving S, and U(n),
n=2,3,... . The only non-trivial Young orthogonal units are those associated with the
two-dimensional irrep [2,1], in which case

[2 1] .
;2‘”}_ L2e+2(12)F (13)F (23) - (123) - (132)], (85a)
22

ol2:1]

0[‘22”} 2 (23)- 13 (123)F (132)] (85b)
21

Choosing @ = @, = {1,2,3}, we immediately obtain two distinct realizations of 3-
electron states with unit occupancies (so that n 2 3), namely

1 2 _ 1 2 1 2 _ 2,11 _
|2 el 2] %) - ke
1 3 1 3 1 2
> - ) = /3021 0(w0) = v, (86b)
2 1 12, 3
1 2 1 2 1 3\ _ 2,1] _
3 >2" 3, 2 >"‘/§02‘ Qo) = y-, (86¢)
1 3y _|1 3 1 3 [21) 86d
2 >2‘2 , 2 ) {3033 Q@0) = -, (86d)
where

= l?[2/123/:?: 2/213/% /321/F 7132/ - /3127 - /231/], (87a)

= 1(/132/ - /321/ £ /312/ % /231/], (87b)

and where we defined
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/ivipiz/ = ¢, (1) ¢, (2)i5(3). (88)

When double occupancy is present, i.e. @ = {1,2,2}, we find similarly

olQw)=N®, r=12, (89a)

o2NQw)y=M¥, r=12, (89b)
with

©=/122/+/212/-2/221/, (90a)

¥ =/122/-/212/, (90b)
and

Ny =1, N2=M1=—“§, My = 1. (91)

Now, for any doubly occupied level, we easily find the normalization factor N(A, p?)
using eq. (81), namely

NA.pH=(1+ dn_ ) 92)

where d, . is the axial distance from i to j in the standard Young tableau r. Thus, in the
present case, for r = (1) = } 2, we have d,=-2and forr=(2) = 13 4. =2, so that

2 1 dy
N([Z, 1], 3 2) =n =V 2, (93a)
and
N([2, 1], 2 3) =n, = /3/2. (93b)

Thus, altogether

1
|2 2) =N@A,p)131/2) o2 NQw) = n;! /3N, ® = 672®,  (94a)
1

and
Il

) 2>2 =N, pH '3/ 2)2o2NQw) = n71 /3M,¥ = 27129, (94b)
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where again

ll 2>=|1 2 >=
2 3—2 ) h

since the irreps (2,1) and [2,1] are automatically implied by the explicit form of the Weyl
and Young tableaux, respectively. We see that the resulting GT states, both labeled with
the same Weyl tableau ; 2, are distinct and should be distinguished by the Young tableau
5 (€q. (95)).

Likewise, when w = {1,1,2}, we find similarly

2,1y [2, 1]
12 > 95)

2 K

B 1>1 =622/ 112/ - y211/ - /121/], (96a)

1
l; >2 =272, 121, =/ 211/], (96b)

although in this case the second tableau projectors 03" produce a vanishing result
(since doubly occupied labels would occur in the same column). The double occupancy
normalization factor (92) now equals V2.

Thus, when we deal with a two-dimensional irrep [2,1] of S,, we can always find
two distinct realizations of the corresponding U(n) basis. We should thus label the
resulting GT states with both Weyl and Young tableaux, as indicated in eq. (95).
However, since the U(n) irrep matrices are independent of the realization used, as given
by the Young tableau s, we can omit this label as long as we always keep it fixed when
evaluating the matrix elements. Indeed, we easily find, using the following representa-
tion of U(n) generators,

Ej = kg,l ejj (k) = k%,l 9: (k))<¢; (K)1, 97
that, e.g.

ol Y-l %)l 3.
or

R

independently of the label s. It is easy to verify that this result is in complete agreement
with the corresponding U(n) result (e.g. the example given in ref. [5], figs. 1 and 26),
e.g. forn=3,
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210 210
21 | Exp | 20 > =712 (99a)
1 1
210 210 1
21 | B | 11 )=(3)7, (99b)
1 1

and
210 210
21 | Ep| 21 ) =1, (99¢)
2 1

where the Gel'fand tableau notation has been used.

This example indicates that indeed the above given considerations apply
generally, even though we considered explicitly only the case when the highest level is
multiply occupied (for the general case, see [72,74] and references therein). In fact, the
simple case considered above is entirely satisfactory for our purposes, since we shall be
working with U(n) isoscalar factors, which are given by the ratio of U(n) and U(n— 1)
CG coefficients and depend only on U(n) and U(n — 1) irrep labels. In particular, they
are independent of the structure of the U(n — 1) states involved, so that we can
conveniently choose the states with all the orbitals singly occupied (i.e. the so-called
special GT states). Based on the SN U(n) reciprocity, we can interrelate the 1 factors
for S with corresponding 1, factors for U(n), as has been shown in [74]. For the sake
of completeness and sxmphcny, we now present the required form of this relationship.

42.  RELATIONSHIP BETWEEN THE I AND /, FACTORS

To find the relationship between the !/ and I factors, we first exploit the
reciprocity between the Sy and U(n) irrep bases (eq (79)) Writing eq. (23”) in the form

A @' I [pls(e®)) = X (VIe' P AI 0" ) [ds(@?))| [VIe' 72), (23"

[virie?

and replacing the S, states by the U(n) states using eq. (79), we can write

VM>!wv N(v,1?)

1 Y
3 N e M A st W) (599

Comparison with the reciprocal relation to eq. (55) shows that (cf. also eq. (7-146a) of
ref. [67])
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(A1 @) [pls(@®) | [v1e' %), (100)

(Ul) (u>l<V>> ¥ N(v,1?)
v 2N, p?)N(u,o?)

the sum extending over all r? tableaux which yield the same multiply occupied part of
the Weyl tableau when the map (80) is carried out as illustrated in fig. 2. Thus, when
only singly occupied orbitals occur, all N(4,p?) factors equal one and we can identify
U(n) and S, coupling coefficients (eq. (100)). Expressing then the coupling coefficients
in eq. (100) through isoscalar factors and U(n — 1) or SN_ f coefficients (eqs. (56) and
(49), respectively) and assuming that the multiple occupanCy occurs only at the highest
levels so that U(n — 1) and SN s coefficients will cancel out, we find that

((M () <V>)= N(v,7?)
(A1) ) | vi)) 72 N(A,p?)N(u, 0?)
(A) (u] [v] ) 101
x(u—fl(pzn w-foo | vy OOV

where the composite /_factor on the right-hand side is defined similarly as in eq. (83)
and involves f factors correspondmg to sequential reduction from S, t0 S Clearly,
analogously (0 eq. (84), [4,] = (A~ £(pD). [ = [~ £,(o)] and [v,] = [V - (2],
The sum over 72 involves f ' terms assomated with Young tableaux yleldmg the same
Weyl tableau as illustrated in fig. 2.

We note that we could also have started with the inverse relationship, eq. (23),
rather than with eq. (23”) as we did. This would result in analogous expressions to those
given in eqs. (100) and (101), which are sometimes preferable to use. Thus, in lieu of
eq. (100), we would obtain (cf. also eq. (7-95) of ref. [67]):

W\ _ N(4,p*)N(u, o)
w ot pre N, 1)

<(9~> ()

0 v (AN @) [ds(@®) | [VIe' 72), (1007

and, likewise, for the isoscalar factors we find similarly to eq. (101)

((ﬂ») (w
A1) ()

(vi)) N(v, 12)

X( [A] (4]
A-f1(pD)] [k-f2(c?)]

) J _ v N@ApHN@u, %)
%o

% ] (101)
[v—f£(12)]
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Here, the sum over p? = p*(@) and 0® = ¢*(8) must extend over all subtableaux p* and
o2 with all possible orbital labelings @ and &, where { @, consists of flabels being
removed. For example, considering the isoscalar factor with (A) = (2 1%), (1) = (2) and
(V)=(321)and (A )=(1?), (i) = (1),{v,) ={2 1), so that f, =2, f,= 1 and f = 3, the sum
in eq. (101’) will involve 3! = 6 terms over the following subtableaux p?, 6%, shown in
fig. 3. (Note that we need at least a three-column irrep (V) in order to obtain a non-
vanishing result when f = 3.)

Ll

t e

. o s -
=i ‘

[« BN S B B S
N O L O A O
b b OO O |x

Fig. 3. An example that schematically illustrates the
subtableaux that are involved in the sum in eq. (1017).
See the text for details.

For many-electron systems, where at most double occupancies can occur, the
summation in eq. (101) will involve at most two terms, and we present explicit expres-
sions for all the possible cases below. Since we can encounter at most two-column irreps
in this case, we introduce simplified explicit notation for the irreps, designating

[A] = [2°1°] =: (a, b),
[l = [291°] =: (4, e), (102)
vl =[2°1°] =: (s, 1),

where, clearly, 2(a + d) + b + e = 25 + ¢, and similarly for the U(n) irreps (to distinguish
I, and I factors, we include corresponding subscripts). We thus have the following
possibilities:
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(i) when ¢ is unoccupied, both I and I factors equal one;
(ii) when ¢, is singly occupied, the I and I_factors are identical, i.e.

(a.,b) (d,e)
(al, bl) (d', el)

(s,0Y _ ((a, b)  (d,e)
(S', tl) . - (al’ bl) (dl, el)

(s,0)
(si’ tl))o ? (103)

and the following possibilities can occur:

@ @b)=(@b),de)=@d-l,e+1Dor(de-1and (s t)=(G~-1,t+1)

or (s,t - 1);

® @b)=@-1b+Dor@b-1);d.e)=Weand (s"t')=(s-1,t+1)

or (st - 1);

(iii) when ¢ is doubly occupied, the following cases must be distinguished:

(ilia) f=2and f, = f, = 1, i.e. we remove two boxes from v and one box from
each A and u. Using the normalization factor as given by eq. (92), we can
write generally

(A) 7y (V) )= 14 gl 172
(a—A(p» w-a) | (v-aqy) = Z T wN-1 ()
(4] (1] v )
x(m—l(m - 10)1 | [v-2(e2)1)’ (104)

where
A(p)=(0...010...0),

with 1 in the pth place (i.e. removing a box from the pth row), AT)
= A(Y) + A(Y,), where ¥, and 7, are the rows in which a box is removed in
the irrep (v), and the sum extends over two possibilities, given by the order
in which these boxes are removed. Explicitly, we obtain

(@b) (de) | (s, ) _ (z_+_2_)”2((a,b) de)| (5,0

((a',b’) @.e) [s-1,0), " \t+1) (@b (de)|(s-1,1+1)

X((a’,b’) (d.e) (s—l,t+1)) (105)
(@,b) (@.e)l (s-10 ),

t \'2((a,b) (d,€)
(Tﬁ) ((a’,b') (d,e)

(s, 0 ) ((a’,b’) (d,e)
(s,t- 1)), \(a’, b)) (d’,€)

(s,1— 1))
(S_ lyt) ;
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where (a@’,b") = (@ - 1,b + 1) or (a,b — 1) and, similarly (d’,e’) = (d - l,e + 1)
or (d,e — 1), and assuming that the label N occurs in A and the label (N — 1) in
M. An equivalent but distinct formula results when N occurs in g and (N - 1)
in A, namely
0 ) _ (t+ 2)1’2 @b) (de) | (50 )
G-1,n) ~ \r+1 (ab) (d,¢)|(s=1,1+1))

y ((a,b) @d,e’) | (s—1,t+ 1)) (106)
(@,b) @,e)| (s-1,n ),
(s,t—l))
(s-1,9),

( t )"2((0, b) (d,e)
t+1 (ab) (d’,¢)

(iiib) f=2,f, =0, f, = 2 (or f, = 2, f, = 0); i.e. both boxes are removed from
tableaux v and u (or A). Generally, we obtain

(a’,b") (d',e")

((a, b) (d,e)

(s, 0 ) ((a,b) d,e’)
(s,t=1) ), \(a’,b) (d’,e)

(A) W (V) ~ . S, 112

(m w-a@y | (v- A(I‘))) = (1+di-1(9) §(1 +dilv-1(9)

X(m (1] vl ) o
[A] [1—-2(0%)] | [v-2(72)]

so that

(a,b) (d,e) (s,0)
((a,b) (d-1,¢) (s—l,t)).,

2(?)”2[(:%%)”2(223 ((i(,ff)l)

(a,b) (d,e-1)]|(-1,t+1)
X((a,b) d-1,¢)| (s-1,9 )

+(._‘_)”2((a,b) (d, €) (s,t—l)}
t+1 (a,b) (d,e-1) (s-1,0),]

assuming that N occurs in the first column and (N - 1) in the second column
in the Young tableau s of [g] (i.e. in 02), or, equivalently

(5,9 )
(s=1,t+1)), (108)

(S,t) ) ((a,b) (dse_ 1)
(s,t=1)),\(a,b) (d-1,¢)
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((a,b) de) | (5,0 ) _(e+ N\ 1427

(a,b) (d-1,¢) (s—l,t))u_(eu) (t+1)

x((a,b) (d, e) (s, 9) (@ab) (@d-1,e+1) |[(s=1,1+1)
(ab) (d—1,e+1) (s—l,t+1))o((a,b) (d-1,e) (s=1,1) )0

+(_t_)“2((a,b) (d,e) (s, 1) (@ab) (d-le+1)| (5,0
t+1 (@b) (d—1,e+1) (s,t-—l))o((a,b) (d-1,¢) (s—l,z))o’

(109)
when N occurs in the second and (N — 1) in the first column of the Young tableau s.

When f, = 2 and £, = 0, analogous formulas result, which can also be obtained
using the symmetry property for the isoscalar factors; therefore, we do not present them
here.

43.  RELATIONSHIP BETWEEN THE I, AND / FACTORS

Let us finally consider the relationship between the /_factors for S, and the
factors for U(n), which is completely analogous to the relationship (101).
Starting again with the relationship (35),

AL AL s, [A218) = 3 ([A)sp? | [A)sey [[Alsp?), (35)
p?

and the corresponding one (eq. (59)) for the U(n), we assume that all the orbitals
associated with W, are singly occupied while W, will have the highest label multiply
occupled s0 that we can make the correspondmg tableau partitions, i.e. ¢ = ¢! 7% and
p? p p (note that r = sp?), p p designating the singly and multiply occupied parts
of p?, as schematlcally shown in ﬁg 4. Using now the reciprocity relationship (eq. (79))
and comparing with eq. (59), we find that

<<x> (A1) (/12>> 3 M Pa) 131597 12150 (110)

%% W, W oL N(A,, 72)

Clearly, the Weyl tableaux W , W, and W correspond to Young tableaux s, tand r = Joud
whose structure is schematically shown in fig. 4. Expressing the transformation
coefficients in terms of corresponding isoscalar factors and U(m — 1) or S, _
coefficients, which must be identical in view of the assumptions made above (since
N(A,p% = 1in eq. (79) when only singly occupied orbitals are present), we obtain that
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N-2 N-1 N o
i i K and v, i, kg — m

Fig. 4. A schematic illustration of the partitioning of
the Young tableau r = sp* = spfp;, where {i,j,k}
represent a permutation of {N -2, N ~ 1, N} and are

mapped onto the same orbital m when going to a
corresponding Weyl tableau.

2
(2) [ ) oz N(A2,T2) (2] | (1]
N(A,, 72)( [A2] [l]j
_ A2,7) (13 , 111
28 \ M ) | ()

where the last relationship results when we start from an inverse of eq. (35). Here, we
defined [,] = [A, - ()] and [y] = [A - f( pfng], which result from the removal of f
boxes constituting the partial tableaux 72 and p., respectively, from the tableaux [4,]
and [A]. Thus, the 1_factors appearing in eq. (111) are in fact the f-particle /_ factors
defined, in complete analogy to the multiple /_ factors of eq. (83), as a product of one-
particle /_factors, namely

[A21 ] [A] ) [A2] [A] ]
A =|[A1]
([ e ( Y A =] | A-f(p2)]
() [A) )
(A2 = 1(z0)] | [A=1(p2)]

x | [A1]

[A2 = 1(72)] [A—I(P%)])
(A2 =2(9)] | [A~2(p3)]

(A1) (111

[A2 - (F~ D)(1D)] h A-(- 1)(P%)])
[A2 —f(72)] [A-f(p2N )

where 72 and pfn define the sequence in which the f boxes are removed.
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We can, finally, transform the 1 factor into the I factor using eq. (52) oreq. (53).

Exploiting then eq. (101) for this pamcular case, we can also directly relate the I and
1, factors, namely

(A2)
(< v (K2

(M) Y(A1, o) ((Xd) (A2)
(1) Y(A1,A2;4) \(A)  (u)

)

:[N!(Nz—f)!fpfxz}nz((ll) (Az) W) (112)

(N =1)IN2! fu, fa (A1) () [ {w)’

with ¥ given by eq. (45). Note that when f = 1, this relationship is identical with that
relating 1s and l0 factors (eq. (52) or eq. (53)).

To conclude, we remark that we now have at our disposal the explicit relationship
among all four isoscalar factors I,1,1 and /. The principal relationships are given by
egs. (53), (101) and (112). In the many electron case, egs. (103), (105), (106), (108) and

-(109) are very useful. Thus, knowing one of the factors, we can now determine all the
remaining ones, if needed.

S. Explicit algebraic expressions for isoscalar factors

We shall now present explicit expressions for the isoscalar factors, which
are required in UGA formalism, and examine their symmetry properties. We can
thus restrict ourselves to at most two-column irreps of U(n), which we again
label as indicated in eq. (102). The Kronecker product of two such irreps (221°) ® (271¢)
= (a,b) ® (d,e) can, of course, contain three- and four-column irreps. These, however,
can be ignored in many-electron problems, since the corresponding wave functions
must vanish in view of the Pauli principle. Assuming that b > e, we easily find that

km
(@, b)® (de) > Y ®(a+d+e—k,b—e+2k)
k=0
&
- Y @(a+d+k,b+e-2k), (113)
k=kwm

where
km =min{e,n— (a+b+d)},

kv = max{0,a+b+d+e—n},

and the arrow indicates a restriction to at most two-column tableaux. Thus, for example,
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2,1 ®(1,1) > 4,0 @ (3,2), (114)

assuming that n 2 5. Clearly, if n = 4, only the first irrep survives, while for n < 3, no
two-column irreps can be formed. Since usually n > N = 2(a + d) + b + e in most
quantum chemical computations, we can simply take k= e or k, = 0. Clearly, the CG
series (113) is dual to the corresponding SU(2) x SU(2) coupling for spins, as may be
easily seen from the behavior of the second label in eq. (113).

We recall that a general CG coefficient

(S”)> (115)

<(a, b) (d,e)
w

U 1%

factorizes into a successive product of /_factors

(@b) (e
(@,by d,e)

(s.4) ) , (116)
(5,19,

similarly as given by eq. (50) for the S, coefficients. Since we now consider only the
U(n) factors, for simplicity we can omit the subscript u. Thus, for example (note that
we delete the irrep labels in CG coefficients since they are implied by Weyl tableaux)

1 2
13 2 6|2 4
24 5 |36 =((2’1) (1,1) (3’2)).((2,0) (1,1) (3,1))
7 5 2,0) (L,H| @3, D 2,00 (0,2) ] 2,2)
7

2,0) (0,2)] (2,2)\ ((2,0) (0,1)] (2,1)
X((z,()) ©,1) (2,1)]'((1,1) (0, 1) (1,2))

(1L1) (0,1)| (1,2)) ((0,2) (0, 1)](1,1)
X[(O:Z) o, (1,1))'((0,1) (0,0) (0’1))' 117)

There are nine independent possibilities for the / factors of the type (116),
depending on the orbital occupancies, as shown schematically in fig. 5, including the
trivial unoccupied case (diagram O),

(a,b) (d,e)| (s,1)
((a,b) (d e) (s,t))uzl' (118)

The derivation of explicit expressions for these factors is given in the appendix. The
results are summarized in table 2. These results generalize those given in our earlier
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il

PE ) PR B P

PE) WP B W

Fig. 5. Schematic representation of basic distinct types of U{n) and S, isoscalar factors,
involving at most two-columnn irreps of the unitary group approach to many-electron
systems. The factors are arranged by the occupancy of the highest orbital, starting with
the trivial unoccupied case (O). The remaining factors are obtained by the interchange
of the first two tableaux, which brings about the phase change given by egs. (119)~(121).
All tableaux shown pertain to the /, factors, while the I factors of S, can only involve
single occupancies and can thus be of types A-D. For the 1, factors, types O and A-E
can occur, while again only types A-D pertain to the | faclors of §,. See text for details.

T

paper [75], which were restricted to the coupling of single-column tableaux, i.e.
to the case that a = d = 0. The latter can be easily obtained by setting a=d =0 in
table 2. For example, case (A) will yield eq. (A9) of [75], taking into account eq. (A2)
and the generalized Condon—Shortley phase convention.

We remark that table 2 gives only independent / factors, the remaining ones
being given by their symmetry properties. We recall [74,75] that an interchange of the
first two columns changes only the phase, given by the irreps involved, namely

((l) ) | (v ) _ (_1)(A)+(l')+(u)+(,u’)+(v)+(v’)((4u> ) | » ) (119)
A% W) v Wy A1)
For two-column irreps, this phase factor is given by the formulas:

(- 1)(a,b) ( 1)(0 a+b)( 1)(0 a) ( 1)ab+b(b-1)/2, (120&)

since



_ (1+3)(1+Q( +1+5)s [4 . ) .
wl@+i+a=-a0+2-9(+a+op |, (1) Ur-9 (+i-p G-9m) H
B (T+a)(T+gN1+1+5)s [4 . . )
wlTrireru-gra+qpo ], (10 ("1-9 Q+#1-p (1+9'1-9 O
4
- (1+2)(1+q)(1+1+5)s . . )
wl(triro+Qu-s+(+2+p(1+q+0) 1) U179 G- @mewd
(1+1+9)s
l o (1+2+p)p (' -9) @'r-p (9°) q
(1+0(1+2) : (T+N(1+2)s . . . “
(b +1+2+q)NT+149-2) | G+ 1+ q+a)z+1+q-2)p | (T+r1=9 (@+21-p) @» g
(1+22 4 (T+N(1+2)s z .
G-+ @142+, , (1D lrive-qu-q+aa+a+n],,,,, a0 -9 =P @a
1
(T+n0(z+2) z (T+1+8)01+2) 4 ;
wlGra-aG-z+a+a |, , (19 wli—gravqura-ap], ., (10 (=19 a+21-#) SAZEE
(1+1)2 z (1+21+8)(1+3n z
sl +a-3a)z+1+2+q) |1 LG+ a=-2)z+142+q)(1+2+p) | (1 -1 a1-2p (90 v
1 I (19 (#'p) (¢'n) 0 0
Cn'r (1.9 (.#'.p) (,9.,v) odhL  Aouednoop
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(_1)(0,19) - (_l)b(b—l)/2_ ' (120b)
The following special cases arc very useful in actual applications:

(_1)(a!b)+(a)b'—1) - (_1)d+b+1

(_1)(a,b)+(a-—l,b+l)=(_1)a+1’ (121)

(_1)(a,b)+(a—l,b) - (—'1)b.

Using this symmetry property, we easily obtain the remaining I factors that are not
listed explicitly in table 2.

We can now also obtain the explicit expressions for the remaining isoscalar
factors. We know that the 1, factor for S, equals the corresponding / factor when only
single occupancies are allowed (eq. (101)). Thus, only those cases are relevant for the
10 factors in which a single box is detached from the Young tableau, i.e. cases (A-D)
of fig. 4 and table 2. The I factors are in this case given by exactly the same expressions
as the /_factors and, consequently, are not repeated in table 2.

The 1, factors can be similarly obtained using relationship (112). As property (60)
indicates, the highest label must always occur in the second Weyl tableau W, of the
transformation coefficient defined by eq. (59). This is also clear from the structure of
the 1t factors, whose first irrep is always the same as the notation of eq. (62) implies.
Consequently, only cases (A-E) of fig. 4 can occur for the 1, factors. For the same
reason, there is no symmetry property for these factors, although one could formally
introduce a similar property as for the / factors (eq. (119)) if desired. The relevant
explicit expressions for the I, factors are listed in the last column of table 2.

Finally, the expressions for the /_factors are again identical with those for the /,
factors. Since only single occupancies are relevant in this case, the pertinent expressions
are given by the formulas in the last column of table 2 for cases (A-D).

We now illustrate some possible applications of the derived expressions given in
table 2 on a few examples.

Example 1

The CG coefficient appearing on the left-hand side of eq. (117) is easily evaluated
to be

12
13 26|2 4
24 5 |3 6)=271"2.312.3/52. 1. (-1/4)- 1=-47". 10772,
7 5

7 (122)

where we have used the segments of types A, B, D and F.
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Example 2

We can couple the irrep bases for (2 1) = (1,1) and (2) = (1,0) of U(n) to obtain
a basis for the irrep (221) = (2,1) of U(n), where n 2 3. One of the resulting states will
have the form:

1 2
2 3>=(1/4>1 2)435>+(ﬁ/8>]; 2)125>—<2ﬁ/8)|; 3)125>

2
5
ram|! Nearam|l Hin-gam|; i
~am|; Hns-qzm|g iz, (123)

since the relevant CG coefficients are easily evaluated as in example 1, e.g.,

12 35|, 5 =((1,1) (1,0) (2,1)).((1,1) ©,1) (2,0))
2 s (LD O ]20) 11D 00 |d,1)
=(1/2)- (1/2) = 5, etc. (124)

We can easily verify that the resulting state (123) is normalized, since the CG
coefficients constitute a unitary transformation. Note, however, that for an inverse
transformation we obtain, for example,

- 1 2 1 2
;35)'2 >=(1/4) 2 3)+(/3/0)2 5), (125)
5 3

the relevant coefficients again being given by the CG coefficients, e.g. eq. (124). The
reason why this inverse relationship appears to be unnormalized can be understood as
follows. We can regard the first basis state |3 5) as a component of a symmetric tensor
operator, which transforms as a basis for the irrep (2), acting on the GT state l ;2> of
a many-electron system. This will produce two five-electron GT states belonging to the
irrep (221). Generally, however, we must also include basis states belonging to the irreps
(4 1),(32)and (3 1?)in addition to the two-column irrep (2%1) considered, in which case
the normalization condition will hold again. However, these three- and four-column
states will vanish for many-electron systems, so that they will not appear on the right-
hand side of eq. (125).
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Example 3

Using the system partitioning [14,40,83] for the states belonging to the irrep
(221), we can express the states adapted to a chain U(n, + n,) > U(n,) ® U(n,) in terms
of U(n) = U(n, + n,) GT states or of their CAUGA representation in the irrep (2) of
U(2"). Thus, considering a partitioned irrep {2 1) ® (2), we obtain, for example, that

1 2 1 2
l<221> ; 2 3 5>=(1/2) 2 3>+(/§/2) 2 5>, (126)
5 3
since
1 2
12 35 _ @ | (221 a1y | 22
<<22” 2 : 3>“(<2” i) RIS
) (1LO) | 21D 0.1 | @0y _ .
-—((1,1) 0. 1) (2’0))1[(1,1) (0.0) (l'l)l—(I/Z)-l—l/Z, (127)
and
1 2
1 2 35 (1,0) | 2.1 o1 ] @1
<<221> 2 : 5>=(“’” ©,1) (1,2)1(“’” (0,0) (1,1))[

=(/3/2)-1=43/2, (128)

using the / factors of types B, C and D, A, respectively. Representing GT states on the
right-hand side of eq. (126) in terms of CAUGA two-box states [13-15,75], we will
obtain directly the CAUGA representation of the partitioned basis. We can thus generate
directly CAUGA partitioned basis states employing the I factors of table 2.

It is instructive to note the difference between egs. (125) and (126), which are
very similar at first sight. The first, eq. (125), represents a product state from the irrep
2)®(2 1) in terms of GT states carrying the (2?1)irrep of U(n), n= 3. The second,
eq. (126), represents a partitioned basis state for the irrep (221) (i.e. not a GT state
adapted to the canonical chain (54), but a non-GT state adapted to the chain (58)), again
expressed as a linear combination of GT states carrying the same irrep. Consequently,
the latter state is properly normalized since we are within the same irrep.

6. U(n) Racah coefficients

We have seen above that, in complete analogy to the SU(2) angular momentum
theory, one can introduce various vector coupling coefficients and corresponding
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isoscalar factors for both S, and U(n) groups and interrelate them using the well-known
Sy—U(n) reciprocity. Motivated by this analogy, we can similarly introduce Racah
recoupling coefficients or corresponding 6/ symbols when dealing with the coupling of
three basis vectors. In the SU(2) case, where no multiplicity problem arises, the useful-
ness of this concept can hardly be overestimated. We recall that in this case there is a
simple relationship between the Racah coefficients W or U (due to Jahn [85]) and 6/
coefficients, namely

Uiz Ur2)sJasiml ji s jajs (az )i j'm?

= 8jj Omm' U1 j2Jj3:J12 123)

= 8 Smmr (= 1) 2 (215 + 1) 2y + 1112 212
3 ] J23

= 8 Omm: (212 + 1)(223 + VI W (i o i3 12J23)s (129)

where | j j,(ji,)s i3 jm) and |, j, j,(J,,); jm) designate distinct basis vectors obtained
by coupling the tensor product basis |jm)|j,m,)|j,m,) following the coupling
schemes ((1,2),3) and (1,(2,3)), respectively.

The usefulness of U(n) Racah coefficients, which we will now define, will
become apparent when we evaluate matrix elements of the products of two tensor
operators or when we construct isoscalar factors for nontrivial tensor operators (such as
adjoint tensors) from those given in the preceding sections. Although we cannot give
here a general treatment, which would enable one to obtain an arbitrary U(n) Racah
coefficient, we shall consider a few very useful special classes of these coefficients, in
particular those associated with multiplicity-free couplings. We shall also briefly mention
some basic properties of these coefficients, which show their similarity to the corre-
sponding SU(2) quantities.

Just as in the angular momentum theory, the U(n) Racah coefficients represent
transformation coefficients between the states obtained through different coupling
schemes, namely

[(A1A2)ay2 412, A3, )

= 2 UA22443:412A23) appamaa | A1, (A2 A3) 03 Ag35’A),  (130)

Ay, 0,0

where we have dropped the angular brackets designating U(n) irreps, writing simply
(A4 = A,, and where we introduced multiplicity labels which resolve the multiplicity
problem in the following couplings [73]:
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A XAy = a,l, A, XA, > ai,

A, XA, > a,A,., A X Ay = ' (131)
Carrying out the indicated couplings using repeatedly eq. (55), we can express the
Racah coefficient U in terms of CG coefficients as follows:

/11 2.2 a /12

5,11’5WW'U(3,1/1212'3;2,12 lZB)a;z,au,a,a’= {%} <W1 W2 ;;,121 >
y Az A3 @A\ JAy A3 | aa3das\ JAL Axs | @A (132)

<W12 W; | W > <W2 Wi | Wy > <W1 Was | W' >’

where the summation extends over all Weyl tableaux except for the resulting ones
W = W’. The Racah coefficient U vanishes unless all the couplings (131) satisfy the
Littlewood-Richardson rules.

The basic properties of these U(n) Racah coefficients parallel those for the SU(2)
ones. In particular, we note the following rules:

(1) Orthogonality properties implied by the unitarity of transformation (130),

Y U A2A433412223) gy, a0, 0,0 U(A1 A2 AA33412 223 )ats, an, a7, o

Az, an,a

= 8141, Oz, iz O,a” s (133a)

> U A2423:412423)an.am, 0,00 U(R1 A2 2433 412493 ) 0z, o, a0

Az, anz, @

= 6,25 O, a3 O, - (133b)
(ii) Out of the numerous symmetry properties, we just note the following one:

UM A2A433;212423) 0z, 0m, 0,

= OU(A3 2 A41: 23 A12) o, oz, s (134)
where the phase factor © is given by the product of four phase factors

O =0(A142412)a,0(A12434)a O(A243 423 )0 O(A1 423 A) o, (135)
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each characterizing the symmetry of corresponding CG coefficients with respect to the
interchange of coupled irreps when the coupling is not multiplicity-free, e.g.

<11 A2
W W,

‘112112>
Wi,

(136)

= (__1)2.1+/'Lz+lxze(ll ‘12112)0:12 <12 A 0512/112> ’

W, W | Wp,

where the standard phase (—I)Ais the same as in eq. (119). In the multiplicity-free case,
we thus have that all 8(,1‘. A /’L‘..)ay are equal to one so that we recover a standard sym-
metry property as in the Sd(Z)’ case, namely

U(A1A2A43:412423) = U(A3 A2 AA15423 A12). (137)
(iii) Reduction when one of the irreps is a trivial scalar representation {0) gives

U(0A2A23A3;242 423 )-anan- = U(A1041343;41A3)-_qaa
=U(A1422120;4122)apy——ay, = 1- (138)

The basic relationship, eq. (132), can be rewritten in several different ways, since
we can use the CG orthogonality relations (egs. (63) and (64)) to move one, two or three
CG coefficients to the left-hand side. Thus, multiplying both sides of (132) with

a’A’
WI

summing over ', A’ and W’, and using relationship (64) (where we now also have to
sum over the multiplicity label «’), we obtain

Ay lzz)
Wi Wi/,

a’Zl | A A
DU 1224233412423 ) ap a0, < 1 23>
a’ .

W | W Wy
A1 A A
. ( 1 Az | ap 12> (139)
Wa, W3, Wi W W Wi2 [
N (112 A3 | @l > (1»2 A3 | a3 323>
Wi, Wil W [, W2 W3 | Wy [,
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where in the final expression we dropped the primes on W," and W_,. In an analogous
manner, we could move two or three CG coefficients to the left-hand side.

We shall now present closely related but new recursion formulas involving U(n)
isoscalar factors. Starting with the relationship (139), we first replace the U(n) CG
coefficients by the products of / factors and U(n — 1) CG coefficients using the
definition of isoscalar factors (eq. (56)) which, in the case of general multiplicities, takes

the form

A A

(1 2 a12112>=zcl Az alzllz) <#1’ #2’ ﬁxzfln), (140)
Wy Wy | Wy, Bn\t1 M2 | Brapia) \W1 Wil Wi

where y, X u, = B, are the U(n — 1) irreps and W/, W and W/, the corresponding
U(n - 1) Weyl tableaux. Noting that the summations over W,, W, and W, in eq. (139)
now become summations over u,W;, £, W, and u,,W/,, and using again eq. (139) for
the U(n — 1) to replace the resulting sum over the product of three U(n — 1) CG

coefficients by the left-hand side, we finally obtain the desired relationship:

. a’l /11 2.23)

U(A A2 Ad3:A12 4 (ﬁ
z.; (A1A24AA35A12 423 ) 0z, 0,0, ul iy s

A A2l aip A
= X ) U(Ill#2##3:#12#23)&;,%,&3(ﬂl i 12]
pa. 3,112 Pr2,Bn.B 1 M2 | B2tz
XGIZ A3 al)cz A3 0523'123)' (141
12 M3 | Bu)\uy  p3 | B3 tas

Obviously, for the multiplicity-free case, the sums over o', B,,, B,, and 8 are not
required. This formula is very useful since it enables us to calculate Racah coefficients
recursively by a gradual "dismantelling" of relevant Young tableaux. We shall illustrate
its capabilities for a few important special cases in the next section.

7.  Expressions for simple U(n) Racah coefficients

Using the recursion formula (141), we can interrelate special classes of U(n)
Racah coefficients with U(n) isoscalar factors. We first consider the case where

(A)=(1), A)=(m), (A,)=(m+1), (142)

so that no multiplicity problem will arise. Choosing, further, (& )= (0), {1,,) = (4,,)
= (i), we obtain from eq. (141) that
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A
U(XmYAYAs ) (m+ 1)(Ag3)) [“’ (R23) <>)

(0) (A23) [ {A23)

= U({0XmXA23 X3 ):{mXA23 ))((1) (m) | (m+ 1))

© (m)| (m)
a1y (a) | A Y(m) (As) | (Aas) .
"( my () (Ms)][(m) (Aa) <x23>J’ (143)

since only one term will survive on the right-hand side in view of our choice for u,, u,,
and g, which gives (u,) = (u,,) = (m) and (i,) = (4,). The U(n — 1) Racah coefficient
now equals one in view of the property (138) and the last isoscalar factor is also trivial
and equals one, while the isoscalar factors involving the scalar irrep (0) can be evaluated
using eq. (1017), yielding

(m) (1) [{m+1)) _ i
(<m> Oy | (m) )"(’"”) ’ (144)
ey | WY ([ h VP
((3'23) (0) (223))—(Nf12,) ’ (145)

where N gives the number of boxes characterizing the irrep A. Using the symmetry
property (119), we thus obtain

Nfas ]"2(<xa> (m+1)| (A

U(Xm)AXA3)i{m + 1XA23)) = [”(m+ WA (A3)  (m) l (A23)

), (146)

establishing the relationship between the Racah coefficient involving a totally sym-
metric irrep and the corresponding isoscalar factor.

We can next derive a similar relationship involving totally antisymmetric irreps.
In this case, we take

A =(1), A)=A1"), (4 )=1""1), (147)

and using a completely analogous procedure, we find
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UKD(A™AKAS )\ (1™ K A3))

(1"‘) (1 '(1"'*‘))((13) (1”‘“)1 (A) )((3’23) (| W )_1
(Im) 0) | (1m) J\{A3) (1™) [ (A23))\{A23) (0) | (A23)
[ Nhs 17 (s (amety) (A
_[(mﬂ)fx] (ua) (1m) |<2.23>)‘ (148)

We can thus evaluate this class of Racah coefficients in terms of isoscalar factors and
vice versa, if convenient. For example, taking m = 1 and considering at most two-
column irreps (2°1°) = (a, b) (eq. (102)), eqgs. (146) and (148) provide immediately
Racah coefficients for (4,,) =(2) and (A,,) = (1), respectively, which are given in
table 3. These coefficients are very useful in evaluating the matrix elements of sym-
metric and antisymmetric tensors for many-electron systems, which will be discussed
in the second paper of this serics.

Table 3
Racah coefiicients U = UWIM1XAN(2%1%); (Anxz:%)) involving symmetric
and antisymmetric rank-two tensors (4, ,)=(2) and (1), respectively. Shorthand
notation (eq. (102)) is employed to label various irreps, (4,) = (2°1%) = (a, b),

etc., and we define {k, I} = [(b + k)/(b + D]'? (cf. eq. (48) of ref. [8])

(4,,) (4, (A U

(1,0) (ab+1) (a+1b) (21342
(@a+1,b-1) (@a+1,b) {0,13/42

0,2) (a,b +1) (@a+1,b) - {01} N2
(@a+1L,b-1) (a+1,b) (21342
(ab+1) (ab+2) 1
(@a+1,6-1) (@+2,b-2) 1

Let us finally consider a class of Racah coefficients involving both totally
symmetric and antisymmetric irreps. We shall choose

(A =(m), (A,)=(1%). (149)

Clearly, (4,,) and (A) will result by adding m boxes to {(4,) and {4,,), respectively, so that
we can make the following choice for the U(n — 1) irreps:

() =€0), (tyg) = (Ay) = (). (150)
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Substituting into eq. (141), we thus obtain

(m) (A23)

U((m)(lz)(l)(lkﬁ(l”xx”»((0) (A23)

(1) )
(A23)

[(m> (A2)
0) (n2)

(A23 )]
(A23))

= Y UKOXu2)XAz3 X3 il pt12 X A23))
Ha, 13, (2

X((Mz) (1%)
(12) (H3)

(112))
(#12)

(A) )((lz) (1%)

151
o)\ ) (as) (>0

Since in the last factor the resulting irrep (4,,) does not change when going from U(n)
to the U(n - 1) level (eq. (150)), we can immediately conclude that

() = (1%, () = (A,) = (). (152)

We can thus rewrite eq. (151) as follows:

<A«> (1k> <V> = (— (A +{(V)+{ANY+(v" , . ,
(m (1%) <v'>) D Um)YAKVX1E)AX V)

(v (m) | (WA (m)| (A
X(W') (0) (M)({l'} (0) <,1')) ’ (153)

where we have relabeled the irreps 4,,, 4, 4, and 4, as 4, v, A’ and V', respectively, to
better display the symmetry of this relationship.

The isoscalar factors appearing on the right-hand side of eq. (153) involve the
scalar irrep (0) and can be easily evaluated using eq. (101’), similarly as the factors
given by egs. (144) and (145). Thus, for example,

((W (m) (l))z(wjm’

(v €0y [ (v fyNa! (154)

where N, equals the number of boxes in the Young tableau characterizing the irrep (4).
Substituting into eq. (153), we thus obtain

((M (1%) (V>)=(_1)(l)+(v)+(l’)+(v’)|:fvfl'Nv’!NA.!j|l/2
A% (1% [ (v forfaNy INy!

X U(m}A VX1 ANV ). (155)
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This formula, in a different form, has recently been derived using the vector coherent
state theory [69,70] (cf. eq. (3.12b) of the first ref. [70]). It is clear from our derivation
that this result represents a simple recoupling of basis vectors. Moreover, our form
shows explicitly the n-independence of this relationship.

8. Conclusions

In this paper, the ground has been laid for the unitary group Racah-Wigner
calculus, which is particularly suitable for applications to many-electron systems where
at most two-column irreps can occur. After introducing vector coupling coefficients and
transformation coefficients between standard (YY or GT) and nonstandard (partitioned)
bases for both symmetric (S,) and unitary [U(n)] groups, we defined corresponding
isoscalar factors or reduced Wigner coefficients, in complete analogy to the SU(2)
theory. Their usefulness for UGA and CAUGA stems primarily from the fact that the
multiplicity problem can be avoided in this case. Using the U(n)-S,, reciprocity of
tensor product representations, we were able to interrelate all four distinct isoscalar
factors introduced above. It is then convenient to exploit standard S, representation
theory to obtain explicit expressions for all these quantities that are relevant in many-
electron problems. We have also considered U(n) Racah coefficients and were able to
derive explicit expressions for certain important special classes of these coefficients,
which will be useful in evaluation of matrix elements of UGA generators. In all these
cases, the Racah coefficients are simply related with the corresponding U(n) isoscalar
factors. We shall show in future papers that these factors represent essentially segment
level formulas that result from either the heuristic approach of Shavitt [6] or in the
SU(2) graphical methods of spin algebra description [8]. When we recall that in the
latter approach these segment values are essentially given by the SU(2) 6; coefficients,
this is clearly an expected result. However, in this way a clear relationship between the
very different derivations is established and a better understanding of the role of the
Sy—Un) reciprocity in the case of many-electron applications is achieved. Moreover,
the present approach enables essential simplifications in the treatment of partitioned
bases, particularly in the construction of partitioned CAUGA bases and in related
problems. It also leads to a rank independent form for important relationships for Racah
coefficients that were recently obtained using vector coherent state theory [70]. It should
also prove to be very useful in generalizations of present UGA and CAUGA schemes
to systems in which electron number and/or total spin-angular momentum are not con-
served.
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Appendix

DERIVATION OF EXPLICIT ALGEBRAIC EXPRESSIONS FOR ISOSCALAR FACTORS

In this appendix, we derive the algebraic expressions for the isoscalar factors that
are given in section 5. These derivations involve essentially the following three steps:
(i) we first reduce the relevant isoscalar factors to the simplest possible form; (ii) we
then determine their absolute value using their basic properties such as, for example,
their orthogonality relations; (iii) finally, we determine the correct phase factor (using,
for example, eq. (23) of ref. [74]) that is consistent with the generalized Condon—Shortley
convention for these coefficients [75]. The general properties of these factors, particu-
larly their mutual relationships given by egs. (53), (101) and (112), immediately imply
that we require only the /_ factors (or, equivalently, the /, factors involving only singly
occupied orbitals). However, since all four types of isoscalar factors that we introduced
in this paper are simply interrelated, any one of them can be employed in deriving the
explicit expressions for them. It tums out that in fact this is most easily done with the
I or I transformation-type factors. Thus, all the distinct types of these factors that we
need to evaluate are those listed in fig. 5. The types A-D (fig. 5) are pertinent for both
factors, while type E pertains only to the / factors.

(1)  Simplification of 1_ factors

Since the values of isoscalar factors are independent of the actual Weyl or Young
tableaux involved and depend only on relevant irreps, we can choose arbitrarily the
vectors being coupled, or corresponding coupling coefficients, in evaluating these
factors, using the basic definitions (egs. (49), (51), (56) or (62)). Consider, thus, a
transformation between canonical GT states and nonstandard partitioned states (eq.
(59)) for two-column irreps (2%1%) = (a, b). We shall make a special choice of the U(n,)
and U(n,) states in which all orbital labels appearing in the two-column part of the Weyl
tableau are doubly occupied. We can thus write

(a,b) (d,e) (5,0 | (ab) (d,e)\ ]| (s,¢
(5,1 >= 2( > ( )>, (A1)
W, W, AW W Wy w
Jlae.
with the Weyl tableaux W, W, and W having the form:
1 1 m+1 m+1
é a m+d m ;+-d
- - Al
1= a+1 3 W2 - m;+1 ( )

at+b m+e
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and
1 1
a a
a+1 m+1
a+b
W = m+d , (A.17)
m+1 ,
. )|
m+d
i
where m2a+b and m"=m+d, and the sets of labels {i...j...}
={m’ +1,...,m" + e} are identical. The non-coincidence of boxes in the first and

second column of the Weyl tableau that labels the U(n) irrep (s, 1) (eq. (A.17))
schematically expresses the fact that their relative positions cannot be given in general.
The maximal label in eq. (A.1) is obviously m” + ¢ = m + d + e. Since the doubly-
occupied orbitals will not generally change the transformation properties of GT states,
the relationship (A.1) will in fact be equivalent to a simpler transformation in which the
doubly-occupied parts of each state are removed, namely

s—a-dp 22 09 )

W, W,
s—a-d,n| 0,b) (0,e —-a—d,

-3 (CTpm o] G0 ,)> e ’)>, (A.2)

i W W W, w’

ji...

where now
a+1 m'+1

W]’= - 5 Wz"’—' . ]

a+b m+e



346 X. Li, J. Paldus, Unitary group tensor algebras: I

and
a+1 j1

W' = a+b
iy

Consequently, the transformation coefficients in egs. (A.1) and (A.2) are identical, up
to possibly a phase factor 8, i.e.

(s,t)>_e<(0,b) (0, €)
w /" Wy Wy’

This fact can be best understood by recalling the Clifford algebra representation of
canonical GT states [75,86]. Taking now the ratio of two transformation coefficients
and using the relationship (A.3), we find that the corresponding isoscalar factors are
identical, i.e.

<(a, b) (d,e)
Wl Wz

(s—a—d,t)>

W (A.3)

(d,e)
(ds (A 1)

(s—a—d,1)
(s—a—d,t—1)

(s, 0,e)
(s, 1 1))s - ((O’b) 0,e—1)

((a,b) ) , (A.4)

since the phase factor ® cancels out. Likewise, we can find a simplified form for the
remaining types of the I_factors (cf. B-D of fig. 5), i.e.

(s, 1)
(s,t—l)l
(s—a-d+1,)
(s—a—-d+1,t- 1))8’

(d,e)
(d-1,e+1)

((a, b)

(1,€)
0,e+1)

(s,1)
(s—=1,t+ 1))5

(s—a-d,?)
(s—a-d-1,t+1)),’

(A.5)

= ((0, b)

(d,e)

((“’ P de-1)

0, e)

0, e~ 1) (A-6)

= ((0, b)
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(5,9
(s, 1)]s
(s—a-d+ 1,1
(s—a-d,t+ 1))8'

(d,e)
(d-1,e+1)

((a, b) -

(1,€)

(0,e+1) (A7)

= ((0, b)

Now, for cases A and C, the relevant isoscalar factors reduce to a simple case involving
couplings of single-column irreps that were considered in our earlier paper [75]. Using
the relationship between the / and I factors (eqgs. (52) and (53)), we can translate
egs. (A.4) and (A.6) into the relationship between the corresponding /_ factors and using
the results of ref. [75], we find the following expressions for the / factors (or,
equivalently, / factors) of types A and C (fig. 5), namely

((a,b) (d,e) (s,0) )_ (d+e+1)b+e+t+2)(e—-b+1)]"? A.$)
(a,b) (d,e—1)|(s,t-1))" dt(e+ 1) (s +t+ 1) ’ '
(a,b) (d,e) (s, 1)
(a,b) (d,e—1) (s——l,t+1))
1/2
:(_1)a+e+d+s[(d+e+l)(b—e+t+2)(e+b—t)} ’ (A.9)
4s(e+ 1)1+ 2)

where s 2 a + d.

While the simplification as expressed through egs. (A.4)—(A.7) led directly to the
desired expressions in cases A and C, the remaining cases B and D require a special
treatment, since we cannot eliminate two-column irreps as in the cases A and C. We
shall evaluate these factors in the following subsection, considering first the /  factors
corresponding to simplified right-hand sides of egs. (A.5) and (A.7). Again using the
relationships between 1 and/_factors (egs. (52) or (53)), we will obtain the desired final
expressions.

(2) Determination of the absolute value

The absolute values of the remaining isoscalar factors of types B and.D (fig. 5),
ie.

((O,b) (1,e) (A.10b)

0,b) (0,e+1)

(r+ 1,0
(r+1,t- 1)]’

and



348 X. Li, J. Paldus, Unitary group tensor algebras: I

((O,b) (1,e) (r+ l,t))’ (A.10d)
0,b) (0,e+1)| (r,t+ 1)
with

r=s-~a-d, (A.10)

can be easily determined from the nommalization condition for the 1 or [ factors
(egs. (65) and (66)). Thus, for example, we obtain:

©,5) (1,e) (r+ 1,9 2 (0,b) (1,e) (r+ 1,9 )2
((O,b) (G, e+ 1) (r+1,t—1)) ((O,b) (lI,e=1) |(r+1,t=-1)

0,6) (Le)| (r+1,0 Y
+((0,b~1) (1,e) (r+1,z—1)) = (A.11)

Since the second and third terms on the left-hand side are already known and can be
evaluated using egs. (A.8) and (A.9), we find that

((O,b) (1,€)

1/2
(0,b) (0,e+1) } , (A.12)

r+1,1n \ (b+e+2—-0)(b+t—e)
(r+1,t- 1)) B B[ 2t(e+ 1) (b+e+1+4)

where we have used the fact that
2ret=b+e. (A.13)

Similarly, we find for the D-type factors

((0, by (1,e)

(r+1,1) (b+e+t+d)e—-b+1+2) "
(0,6) (0,e+1) ]‘ D[

. (A.14)
(r,e+1) 2e+ D+ 2)b+e—1+2)

Combining these results with the relationships (A.5) and (A.7), we obtain the desired
1 or [ factors for cases B and D. It remains to determine their phases 6, and 8,.

(3)  Determination of phase factors

The determination of phase factors is more laborious than the determination of
absolute values. This is also the case in other approaches [62}, which give only the
absolute values of reduced Wigner coefficients and require additional considerations
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(and conventions) to fix uniquely their phases. In the present case, we shall rely heavily
on the recursion relationship, eq. (23) of ref. [74], which uniquely determines the phases
once the generalized Condon—Shortley convention is adopted. When we use this rela-
tionship in our case (cf. also eq. (A.14) of ref. [75]), we find that

(0, b) (1, e) (r+ 1,0 (0, b) (1,¢e) (r+1,0

Sg“((o,b) 0,e+1) (r+1,:—1))' g“((o,b) (1,e—1) (r,t+1))
3 0,b) (O,e+ 1) ]| (r+1,t=-1) ©0,b) (L,e-1)| (r,t+1) A 1S
"Sg“(m,b) ©, €) (r, ] g“((o,b) ©,¢&) | (o) )’( 13)

where sgn A designates the sign of A, A = sgnA - [Al. Since the second factor on the
left-hand side and the first factor on the right-hand side are determined by eq. (A.9), eq.
(A.15) yields: :

0 —oon(@D) (LA | T+l Y (0.5 (Le=1)[(rr+1)
B= g“[(o,b) 0,e+1) (r+1,z—1))“ g“[(o,b) 0, e) 1) )
(0, b) (l,e—r) (1,t+1r)
="'”“”“((o,b) ©,e—r+1) (1,t+r—1))’ (A.16)

using repeatedly the first equation. Before we make a definite determination of this
phase factor, we first consider the second one, GD. We find similarly that

o —oun(@D) (Lo [+l (0.6 (Le-D) (r+1,t—1)]
D—Sg“((o,b) ©,e+1) (r,z+1)]"‘ g“((o,b) (0, ¢) (r, 1)
0,b) (1,n (r+1,b-17r)
- =Sg“((o,zb) ©,r+1) (r,b—r+1))’ (A-17)

again using (A.13) in the last step. We cannot continue this recursion any further, since
the next isoscalar factor must vanish, i.e.

((O,b) (L,r=1) (A.18)

0,6) (O,n

(r+1,b-r-1)
(r,b—r) )=0,

since the top row coupling violates Littlewood—Richardson rules. We thus invoke the
extended Condon—Shortley convention (cf. also egs. (21a,b) of ref. [75]), requiring that
the last nonvanishing isoscalar factor is positive, i.e.
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((O,b) 1,n (A.19)

0,b) (0,r+1)

(r+1,b—nr)
(r+1,b-r- 1)) > v

Using again eq. (23) of ref. [74], we obtain:

(0, b) (1,n
g“(w,b) ©,r+1)

(r+1,b~ r)) ((0, by (1,n
- sgn

(r+1,b-1r)
(rnb—r+1) 0,6y O, r+1) ]

(r+1,b-r-1)

B ©0,b) O, r+1)
“Sg“((o,b) 0, 7)

(r,b—r+1)
(r,b-r) ]

0,6) O, r+1)

(r+1,b—r—1) A 20
X sgn[(o’ B (0.r) ) (A.20)

(r,b—r)

Now, the right-hand side factors are of the single-column type and are known from
ref. [75] (note that they are of types (iiia) and (iva), fig. 1 of [75]), while the second
factor on the left-hand side is fixed by the convention made, eq. (A.19). We thus obtain
that

o = (@D (LD
D“Sg“((o,b) ©,r+1)

(r+1,b—r))= N (A2D)

(rLb—r+1)

so that © = 1 independently of the irreps involved.
It thus remains to establish a relationship between ©p and O, factors. Invoking
again eq. (23) of [74], we can write similarly to eq. (A.20) that

©0,6) (Lu) | (1,b+u) ©0,6) (Lw | (1,b+u)
g“((o,b) ©,u+1) (1,b+u-1))'sg“((o,b) ©,u+1) (O,b+u+1)]

(0,5 (Ou+1) | (1,b+u+1)
~Sg“((o,b) 0, ) (O,b+u))

ngn(((),b) ©O,u+1) (O,b+u-—l)]’ (A.22)

0,b) (O,u) (0,b+u)

where the right-hand side factors are again of types (iiia) and (iva), fig. 1 of [75], and
yield (~1)* Since the second factor on the left-hand side is of the D-type, while the first
one defines 83 in view of eq. (A.16), with u = e — r, we can rewrite eq. (A.22) as



X. Li, J. Paldus, Unitary group tensor algebras: I 351

@B- S = (-1, ‘ (A.23)
so that in view of eq. (A.21), we finally obtain that
@Bz(_l)u=(__1)e-r=(__1)a+d+e+s, (A.24)

since a, b, d, e and s, t are integers.
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